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ABSTRACT One of the most basic questions in single-molecule microscopy concerns the accuracy with which the location of
a single molecule can be determined. Using the Fisher information matrix it is shown that the limit of the localization accuracy for
a single molecule is given by lem/2pna

ffiffiffiffiffiffiffiffi
gAt

p
, where lem, na, g, A, and t denote the emission wavelength of the single molecule,

the numerical aperture of the objective, the efficiency of the optical system, the emission rate of the single molecule and the
acquisition time, respectively. Using Monte Carlo simulations it is shown that estimation algorithms can come close to attaining
the limit given in the expression. Explicit quantitative results are also provided to show how the limit of the localization accuracy
is reduced by factors such as pixelation of the detector and noise sources in the detection system. The results demonstrate
what is achievable by single-molecule microscopy and provide guidelines for experimental design.

INTRODUCTION

In recent years, advances in imaging technology, computer

control of experiments, and fluorescent labeling methodol-

ogy, including green fluorescent protein based methods, have

made it possible to detect single molecules even in a cellular

environment; see, e.g., Chalfie et al. (1994), Schmidt et al.

(1995), Vale et al. (1996), Schütz et al. (1997a, 2000a,b),

Pierce et al. (1997), Weiss (1999), Smith et al. (1999),

Kubitscheck et al. (2000), Harms et al. (2001), Kues et al.

(2001), Yildiz et al. (2003). The possibility to study the

behavior of individual molecules holds the promise to

provide significant new insights into biological and bio-

physical processes. In single-molecule microscopy, the

quantitative analysis of experimental data plays a crucial role

in the interpretation of the results. For example, by mapping

the trajectory of a fluorescently tagged protein and calculating

its diffusion coefficient, the behavior of a membrane protein

can be characterized; see, e.g., Saxton and Jacobson (1997).

One of the most fundamental issues in the quantitative

analysis of single-molecule microscopy data concerns the

accuracy with which the position of a single molecule can be

determined. Specifying the accuracy with which the location

of a single molecule can be established is not only of

importance to be able to characterize the level of accuracy

that is achievable in single-molecule microscopy. The

accuracy with which a single molecule can be localized

has significant influence on the type of studies that can be

carried out using single molecule microscopy. It is also of

significance in the analysis of single-molecule data. For

example, it has recently been shown in Martin et al. (2002)

that the accuracy of the location estimates has to be taken

into account when analyzing the diffusion behavior of single

molecules. Otherwise noisy measurements of the single-

molecule locations could lead to the erroneous interpretation

that subdiffusional behavior is present even though this is not

the case.

Earlier approaches to the characterization of the localiza-

tion accuracy mainly relied on an approach by Bobroff

(1986) in which the localization accuracy problem was

examined using the least-squares criterion; see, e.g., Schütz

et al. (1997b), Kubitscheck et al. (2000), Ghosh and Webb

(1994), Thompson et al. (2002), and Cheezum et al. (2001).

The use of the least-squares criterion is problematic if

applied to probability distributions that are not compatible

with this criterion. This criterion is ideally suited to estimate

parameters from data that has a Gaussian probability

distribution because in that case the least-squares estimate

is a maximum likelihood estimate; see, e.g., Kay (1993). It

does, however, appear problematic to assume that single-

molecule data is in fact Gaussian distributed.

Aside from the reliance on the least-squares algorithm

other approximations are made in Bobroff (1986) in the

derivation of the result that are often difficult to verify.

Moreover, in the application of those results to single-

molecule microscopy the image profile of a single molecule

predicted by standard diffraction theory is often replaced by

a Gaussian profile; see Santos and Young (2000) for

a numerical comparison concerning the localization accuracy

for both situations. Our results and approaches do not rely on

this approximation.

Here we present a novel approach to determine the

localization accuracy that can be achieved in single-molecule

microscopy. This approach is based on the well-established

statistical theory concerning the Fisher information matrix;

see, e.g., Kay (1993). We obtain an explicit analytical

expression that establishes a fundamental limit of the

localization accuracy for single molecules. The importance

of this result lies in the fact that it shows with an

unexpectedly simple expression how fundamental properties

of the photon-emission process of the single molecule

(emission wavelength, photon-emission rate) and of the
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detection system (numerical aperture of the objective lens,

optical efficiency of the setup, acquisition time) influence the

localization accuracy of the single molecule.

It is of importance that the limit of the localization accuracy

that is derived here does not depend on a specific estimation

algorithm. In fact, the very idea of the approach presented

here is that a limit be given that cannot be surpassed by

a specific estimation procedure that produces a reasonable

estimate of the location of a single molecule. Analytical

expressions are also given to show how the fundamental limit

of the localization accuracy is reduced by experimental

conditions such as pixelation of the detector and noise sources

in the detection process. As expected, the fundamental limit

decreases with the inverse of the square root of the number of

detected photons. If the point-spread function of the optical

system is described by the classical Airy profile we will show

that the numerator of the fundamental limit depends on the

physical properties of the optical-detection system and the

wavelength of the emitted photons. If the point-spread

function is modeled to be a Gaussian profile the numerator

of the fundamental limit will be the standard deviation of

the Gaussian distribution. However, we also show that the

numerator of the fundamental limit cannot, in general, be

expected to be the standard deviation of the distribution that

describes the point-spread function of the optical system.

As will be shown here our approach can be applied, for

example, to Poisson distributed data without having to rely

on potentially problematic approximations. In fact we

demonstrate with a concrete result that relatively intricate

distributions can be analyzed. We also present a limit of the

localization accuracy for single molecule data that is the sum

of a Poisson and Gaussian random variable. Such data arises,

for example, when the photon counts are distorted by

measurement noise in the CCD camera.

The results presented here are not restricted to single

molecule microscopy. They have applications to localization

problems in all areas of optical detection of objects, in

particular point sources. The expectation is that the results

and approaches presented here will give the single molecule

microscopist novel tools to analyze the localization accuracy

of single-molecule experiments without having to rely on

approaches whose assumptions may not be appropriate for

single molecule microscopy.

METHODS

Simulations and parameter values

All simulations and calculations were carried out in the Matlab (Mathworks,

Natick, MA) programming environment (Coleman et al., 2000). We assume

the fluorescent single molecule to have an emission wavelength of 520 nm.

For all calculations, unless explicitly stated, the numerical aperture is set to

be na ¼ 1.4, the magnification is set to beM ¼ 100, and the acquisition time

is in the range from t ¼ 0.01 s to t ¼ 1 s. We set the photon-emission rate to

be A ¼ 2 3 106 photons/s and the optical efficiency to be g ¼ 0.033. These

values of A and g are in the range of values typically observed in single-

molecule experiments (Schmidt et al., 1995; Schütz et al., 1997b;

Kubitscheck et al., 2000; Kues et al., 2001). In Figs. 2–6 we assume square

pixels with no dead space between adjacent pixels and unless otherwise

stated, the single molecule is positioned at the center of the pixel array.

Maximum likelihood estimation

In the nonpixelated case, maximum likelihood estimation was carried out for

two different acquisition methods, one when the acquisition time was fixed

and the other when the total number of detected photons was fixed. In the

former case, due to the stochastic nature of photon emission, the total

number of detected photons varied for every image, whereas in the latter

case, the number of detected photons remained the same.

For the first acquisition method, a Poisson random number N1 with mean

gAt (denoting the expected number of detected photons) was generated and

N1 random vectors were generated (see ‘‘Random number generation’’) that

describe the spatial coordinates of the detected photons. The maximum

likelihood estimation was carried out using a gradient-based search

algorithm (Optimization Toolbox of Matlab; Coleman et al., 1999). For

every value of gAt, 300 estimates of position were computed from which the

standard deviation was calculated. For the second acquisition method the

same procedure was followed except that no Poisson random number was

generated because the number of detected photons was fixed.

In the pixelated case, the maximum likelihood estimation was performed

for the fixed acquisition time method. For a given pixel array size, pixel

dimensions, single-molecule location, and gAt, 300 images were simulated

by first generating a noise-free pixelated image and then adding Poisson and

Gaussian noise to the pixel values. Using the simulated data, maximum

likelihood estimation was carried out using an algorithm analogous to the

one that was mentioned above. The standard deviation of the estimates of the

single-molecule location was then calculated.

Random number generation

The simulation of the two-dimensional distribution corresponding to the

point spread function can be carried out by reducing the simulation to that of

two one-dimensional distributions. Let F denote a uniform random variable

with density function fF(f) ¼ 1/2p, 0 # f # 2p and let R denote a one-

dimensional continuous random variable with density function fR;aðrÞ ¼
ð2J21ðarÞ=rÞ; r$ 0, where a¼ (2pna) / (lemM). Let R andF be independent

of each other. Define X :¼ R cosF1Mu and Y :¼ R sinF1Mv, where u,
v denote the coordinates of location of the single molecule andM denotes the

magnification of the objective lens. Then the joint density function of X and

Y is given by

fX;Yðx; yÞ ¼
1

2pr
fR;a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx �MuÞ2 1 ðy�MvÞ2

q� �

¼
J
2

1 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx �MuÞ2 1 ðy�MvÞ2

q� �
pððx �MuÞ2 1 ðy�MvÞ2Þ

;

where �‘\ x, y\‘. To generate a random vector (x, y) that describes the

spatial coordinates of the detected photons on the detector, we first generate

a uniform random number f between 0 and 2p, then generate a random

number r with density function fR,a and set x :¼ r cos f1Mu, y :¼ r sin f
1Mv. The uniform random number f is generated using a standard random

number generator (Coleman et al., 2000). The random number r is generated

by the transformation method (Ross, 2000) in conjunction with a numerical

inversion of the distribution function corresponding to fR,a using a look-up

table.
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RESULTS AND DISCUSSION

Fundamental limit of the localization accuracy

We consider a basic setup of an optical system (see Fig. 1)

where a single molecule in the specimen plane is at the focus

of an objective lens and its image is captured by a planar

detector. The time points of the photon emission process of

the single molecule are modeled as a Poisson process and the

single molecule that is imaged through the optical system is

modeled as a point source (Born and Wolf, 1999). We

assume that the detector captures the spatial coordinates of

the detected photons. Since the photon emission process is

inherently a stochastic phenomenon the acquired data is

stochastic in nature. Therefore the coordinates on the detec-

tor of the detected photons are assumed to be independent

and identically distributed random variables with a density

function

fuðrÞ ¼ J
2

1ðajjr � r0jjÞ=ðpjjr � r0jj2Þ; r :¼ ðx; yÞ 2 R2
;

(1)

where u ¼ (u, v) 2 R2 denotes the position of the single

molecule/point source in the specimen plane, r0 ¼ Mu

denotes the center of the image of the single molecule/

point source in the detector plane, jjr � r0jj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx �MuÞ21ðy�MvÞ2

p
, a ¼ 2pna / (lemM), na,M denotes

the numerical aperture and the magnification of the objective

lens respectively, lem denotes the emission wavelength of

the single molecule, and J1 denotes the first order Bessel

function of the first kind.

The experimental data from which the location of the

single molecule has to be inferred are the coordinates on the

detector at which the emitted photons are recorded. Due to

the random nature of the acquired data the determination of

the location of the single molecule is a statistical problem.

We therefore define the localization accuracy of a specific

estimation method as the standard deviation of the estimated

locations of the single molecule assuming repeated experi-

ments; see also Bobroff (1986), Schütz et al. (1998), and

Thompson et al. (2002). However, there are several methods

by which the location of a single molecule can be estimated;

see, e.g., Cheezum et al. (2001). Hence the question arises as

to what is the best possible localization accuracy that can be

achieved.

To answer this question, we calculate the Fisher

information matrix for the underlying stochastic data gen-

eration process; see, e.g., Zacks (1971) and Kay (1993).

The Fisher information matrix I(u) plays a central role in

the analysis of estimation algorithms. Its inverse provides,

through the classical Cramer-Rao lower bound (see, e.g.,

Zacks, 1971, and Kay, 1993), a lower bound for the

variance varðûÞ of any unbiased estimator û (i.e., any

estimation procedure whose mean produces the correct

result), specifically

varðûÞ$ I�1ðuÞ:

Moreover, fundamental results in large sample statistics

show that any ‘‘reasonable’’ estimator (including the

maximum likelihood estimator) has an asymptotic variance

that equals the inverse of the Fisher information matrix; see,

e.g., Rao (1965), Zacks (1971), and Kay (1993). If this

methodology is applied to the problem at hand the Cramer

Rao lower bound shows that the variance for any unbiased

estimation procedure for the coordinates of the single

molecule will be larger than the inverse of the Fisher

information matrix. Therefore we interpret the inverse of the

Fisher information matrix as a lower limit to the variances of

the estimation procedures that might be used in the detection

of single molecules. It is important to note that the inverse

I�1(u) of the Fisher information matrix is independent of

a particular estimation procedure and therefore serves as

a uniform bound for any reasonable estimation method. We

are interested in obtaining a limit for the standard deviation

rather than for the variance of the estimation procedures. We

therefore consider the square root of the inverse of the Fisher

information matrix as a limit of the localization accuracy for

a single molecule.

To obtain a bound on the localization accuracy it is

therefore necessary to calculate the Fisher information

matrix and its inverse based on the general form of the

Fisher information matrix (see Eq. 7 in the Appendix). The

Fisher information matrix only depends on the statistical

model of the data generation process. Here we consider three

different scenarios. In the first case, which we introduced

FIGURE 1 Schematic setup of the optical system used to capture the

image of a single molecule. Here u:¼ (u, v) denotes the position of the single

molecule on the specimen plane and r0 ¼ (x0, y0) ¼Mu denotes the position

of the center of the image of the single molecule on the detector plane where

M denotes the magnification of the lens.
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above, we analyze the situation in which the stochastic data

generation is described by the photon emission process and

the distribution of the detected photons in the detector plane

is given by the Airy point-spread function profile. In the

second scenario (subsequent section) we also consider

pixelation of the detector and Poisson noise sources due to,

for example, the dark current in a CCD detector, scattered

photons, or background fluorescence. In the third case

(subsequent section) we expand on the second scenario by

allowing for additional Gaussian noise sources that arise for

example in the readout process of a CCD camera (Janesick,

2000). Each of these stochastic models leads to a different

Fisher information matrix (see Appendix for the calcula-

tions), which in turn leads to a different bound.

Within the first stochastic framework laid out above the

fundamental limit du (dv) of the localization accuracy for the

u (v) coordinate of the single molecule is given by (see

Appendix for the derivation)

du ¼ dv ¼
lem

2pna

ffiffiffiffiffiffiffiffi
gAt

p ; (2)

where A denotes the photon emission rate of the single

molecule, 0 # g # 1 denotes the optical efficiency of the

detection system, i.e., the probability that a photon, which is

emitted by the single molecule is detected by the detector and

t denotes the acquisition time. For example, the fundamental

limit of the localization accuracy for a green fluorescent

protein (GFP) single molecule is 2.3010 nm for an

acquisition time of t ¼ 0.01 s and 0.7277 nm for an

acquisition time of t ¼ 0.1 s. Here we have assumed typical

experimental conditions, i.e., A ¼ 2 3 106 photons/s, lem ¼
520 nm, g ¼ 0.033, na ¼ 1.4; see also Kues et al. (2001)

where similar values for experimental parameters are

reported for a GFP molecule. Fig. 2 shows the dependence

of the fundamental limit on the expected number of detected

photons for these experimental settings.

We use the term fundamental here to describe the fact that
the model that underlies this expression does not take into

account any deteriorating effects in the acquisition system

such as pixelation of the detector and the various noise

sources that typically occur in experimental settings. This

expression only takes into consideration the basic optical and

stochastic phenomena that are inherent in any single-

molecule experiment. The effects that experimental con-

ditions have on the limit of the localization accuracy are

analyzed in subsequent sections.

This result provides a simple analytical expression that

quantitatively exhibits the dependence of the limit of the

localization accuracy on the optical properties of the

microscope and the photophysical properties of the single

molecule. The fundamental limit exhibits an inverse square

root dependence on the expected number of detected

photons, which is in agreement with previously published

results; see, e.g., Ghosh and Webb (1994) and Thompson

et al. (2002). The result, in particular, implies that to improve

the limit of the localization accuracy by a factor of two (i.e.,

halve the value of du), we either need to double the numerical

aperture of the objective lens, or increase the photon-

emission rate or the optical efficiency by a factor of four, or

halve the emission wavelength of the single molecule. This

means that the location of a single molecule emitting blue

light can be more accurately determined than one that is

emitting red light, provided all other factors remain the same.

It should be noted that the fundamental limit is independent

of the magnification M of the optical system.

The above result provides a limit for the smallest possible

value of the standard deviation of a reasonable estimator of

the location of a single molecule. It is therefore important to

know whether an estimator exists whose standard deviation

comes close to this limit. It is well known from large sample

statistics that the variance of a large class of estimators

asymptotically approaches the inverse of the Fisher in-

formation matrix (Zacks, 1971; Rao, 1965). We therefore

FIGURE 2 Fundamental limit (solid line) of the localization accuracy (see

Eq. 2) for the u coordinate of a single molecule with experimental

parameters similar to those for a GFP molecule as a function of the expected

number of detected photons gAt ¼ 66,000 photons/s t. The x axis range

corresponds to an acquisition time range from t ¼ 0.01 s to t ¼ 1 s. The

figure also shows the standard deviation of the maximum likelihood

estimates of the single-molecule position as a function of the expected

number gAt of detected photons (1) and as a function of the total number of

detected photons (}). The standard deviations of both the estimates approach

the fundamental limit as the expected (total) number of detected photons

increases. Note that the standard deviation for the latter case is uniformly

closer to the fundamental limit than for the former case.
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consider one such estimator, namely the maximum likeli-

hood estimator. Fig. 2 shows the standard deviations of the

maximum likelihood estimates of the single-molecule

location for two different acquisition methods, one when

the acquisition time is fixed and the other when the total

number of detected photons is fixed. In both cases the

standard deviation of the maximum likelihood estimates

approaches the fundamental limit as the expected (total)

number of detected photons increases.

We have assumed that the measured data consists of the

spatial coordinates of the detected photons. If we addition-

ally assume that the time points of detection of the photons

are also available, not surprisingly, the statistical analysis of

the problem (see Appendix for details) shows that the

expression for the fundamental limit is independent of this

additional information and that only the (expected) total

number of detected photons and their spatial coordinates are

of significance.

Effects of pixelation and noise

The derivation of the fundamental limit of the localization

accuracy assumes the best case scenario for the acquisition

system. This was done to obtain an expression for the best

possible localization accuracy in the absence of deteriorating

factors due to specific experimental settings. For example, it

was assumed that the precise coordinates of each detected

photon can be recorded. Current imaging detectors have

pixels and can therefore record the coordinates of the detected

photons only up to the size of the pixel. In addition to

pixelation we also consider two main categories of noise that

are encountered in practical experimentation. Poisson noise

can be used to model, for example, the effect of scattered

photons on the measured data and Gaussian noise character-

izes, for example, measurement noise in the CCD detector

(Snyder et al., 1993, 1995). To obtain an expression for the

limit of the localization accuracy for a pixelated detector, we

assume that the detector has K pixels denoted by

C1;C2; . . . ;CK . No specific assumptions are made on the

sizes, shapes, or positions of the pixels. The number of

photons detected by a pixel Ck during the exposure time t is
assumed to be Poisson distributed with mean gAt

R
Ck
fuðrÞ dr

for k ¼ 1; . . . ;K: We also assume that the collected data in

the kth pixel is corrupted by additive noise that is Poisson

distributed with mean bkt, k ¼ 1; . . . ;K: For this setting the

limit of the localization accuracy for the estimation of the u
coordinate (the expression for the v coordinate is analogous)
of the single molecule is given by (see Appendix)

du

1

2
+
K

k¼1

J 2

xðkÞ

huðkÞ1
bk

gA

�

+
K

k¼1

J xðkÞJ yðkÞ

huðkÞ1
bk

gA

0
BB@

1
CCA

2

+
K

k¼1

J
2

yðkÞ

huðkÞ1
bk

gA

2
66666666664

3
77777777775

�1
2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; (3)

where J xðkÞ, J yðkÞ are given by

J xðkÞ :¼
ð
Ck

ðx �MuÞ J1ðajjr � r0jjÞ
pjjr � r0jj

J2ðajjr � r0jjÞ
jjr � r0jj2

dr;

J yðkÞ :¼
ð
Ck

ðy�MvÞ J1ðajjr � r0jjÞ
pjjr � r0jj

J2ðajjr � r0jjÞ
jjr � r0jj2

dr;

and J2 denotes the second order Bessel function of the first

kind and huðkÞ ¼
R
Ck
fuðrÞ dr denotes the integral of the

point-spread function (Eq. 1) over the kth pixel for

k ¼ 1; . . . ;K: Note that setting bk ¼ 0 in Eq. 3 leads to

a straightforward modification of Eq. 3 to provide an

expression for the limit of the localization accuracy for

a pixelated finite-sized detector in the absence of any noise

sources.

The expression for the limit of the localization accuracy

for a pixelated detector is a modification of the fundamental

limit du given in Eq. 2. In fact, the expression involves the

fundamental limit du and a correction term (given in

parentheses) that expresses the deterioration of the limit

due to pixelation and noise.

We next consider the case when the acquired data in each

pixel is further corrupted by Gaussian noise of mean hk and

variance s2
k for k ¼ 1; . . . ;K: Gaussian noise arises in the

CCD circuitry and becomes a component of the signal

measured in a pixel (Snyder et al., 1993, 1995). The limit of

the localization accuracy for the u coordinate (the expression
for the v coordinate is analogous) is then given by (see

Appendix)

du

1

2
ffiffiffiffiffiffiffiffi
gAt

p +
K

k¼1

J 2

xðkÞCðkÞ �
+
K

k¼1

J xðkÞJ yðkÞCðkÞ
� �2

+
K

k¼1

J 2

yðkÞCðkÞ

2
6664

3
7775

�1
2

0
BBBB@

1
CCCCA; (4)
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where

CðkÞ ¼ e
�nuðkÞffiffiffiffiffiffi
2p

p
sk

ð
R

+
‘

n¼1

ðnuðkÞÞn�1

ðn� 1Þ! e
� 1

2s
2
k

ðz�hk�nÞ2
� �2

+
‘

n¼0

ðnuðkÞÞn

n!
e
� 1

2s
2
k

ðz�hk�nÞ2
dz� 1;

with nu(k) :¼ gAthu(k) 1 bkt, k ¼ 1; . . . ;K.
We now illustrate the above expressions by showing how

various experimental aspects such as magnification, pixel

array size, pixel dimensions, and noise levels influence the

accuracy with which the location of a single molecule can

be determined. The fundamental limit (Eq. 2) serves as an

important reference point to establish how closely the

specific experimental implementation approaches the best

possible localization accuracy.

For the numerical illustrations we chose parameters that

are typical values for single molecule experiments with GFP

molecules; see also Kues et al. (2001) where similar values

were used. In all figures, unless otherwise specified, the

FIGURE 3 Limit of the localization accuracy for the u coordinate of a single molecule with experimental parameters similar to those for a GFP molecule for

an 11 3 11 pixel array (5 mm 3 5 mm pixel size) as a function of magnification for different acquisition times and noise levels. Panels a and c, respectively,

show results in the noise-free case for t¼ 0.01 s (}) and t¼ 1 s (�). In both figures, the fundamental limit (solid line) is also shown for reference. Panel b shows

results for two different sets of noise parameter values. Here,3 corresponds to a scattering rate (bk) of 6600 photons/pixel/s and a readout noise (sk) of 57 e
�/

pixel (rms), and d corresponds to a scattering rate of 660 photon/pixel/s and a readout noise of 7 e�/pixel (rms). In both cases the acquisition time is 10 ms.
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photon emission rate of the single molecule is assumed to be

A ¼ 2 3 106 photons/s and the optical efficiency is assumed

to be g ¼ 0.033. This implies that the expected value for the

number of photons that can be detected in the detector plane

is 66,000 per second. The emission wavelength is set to be

lem ¼ 520 nm corresponding to a GFP molecule, the

numerical aperture is set to be na¼ 1.4 and the magnification

is set to be M ¼ 100. The single molecule is assumed to be

located at the center of the pixel array. We also assume that

the detector consists of square pixels with no dead space

region between adjacent pixels.

We first consider the effect of pixelation on the

localization accuracy in the absence of noise. Fig. 3, a and

c, illustrate the limit of the localization accuracy for a 11 3

11 pixel array as a function of different magnification values

for t ¼ 0.01 s and t ¼ 1 s, respectively. For very low

FIGURE 4 Limit of the localization accuracy of the u coordinate of a single molecule with experimental parameters similar to those for a GFP molecule as

a function of the expected number of detected photons for a pixelated detector in the presence of different noise levels. Panel a shows the results in the noise-

free case for a 53 5 pixel array (d) and for a 213 21 pixel array (triangles). The fundamental limit (solid line) is also shown for reference. Panel b shows the
limit of the localization accuracy (�) in the presence of noise with a scattering rate (bk) of 660 photons/pixel/s and a readout noise (sk) of 7 e

�/pixel (rms) for a 5

3 5 pixel array. Similarly, panel c shows the limit of the localization accuracy (}) with a scattering rate (bk) of 6600 photons/pixel/s and a readout noise (sk) of

57 e�/pixel (rms). For all the plots the pixel size is fixed to 6.8 mm3 6.8 mm and the x axis range corresponds to an acquisition time range from t¼ 0.01 s to t¼
1 s. In panels b and c, the limit of the localization accuracy in the noise-free case (d) for a 5 3 5 pixel array is also shown for reference.
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magnification values the image of the single molecule is to

a large extent concentrated on one pixel. Therefore there is

little information in the data about the location of the single

molecule on the pixel. By increasing the magnification, the

image of the single molecule spreads out over the pixel array

and the localization accuracy improves. However, due to the

finite size of the pixel array, for larger magnification values

only a small fraction of the image of the single molecule is

detected by the pixel array that results in a deterioration of

the localization accuracy. This shows that if data is only

acquired or analyzed for a fixed pixel array, care has to be

taken to match the pixel array and magnification. With an

appropriate choice of magnification it is, however, possible

to come close to the fundamental limit.

We next consider the effect of pixel array size on the limit

of the localization accuracy. Fig. 4 a shows the effect of the

number of pixels on the limit of the localization accuracy in

the noise-free case for a 53 5 array and for a 213 21 array.

In both cases the pixel size is fixed to 6.8 mm 3 6.8 mm. By

increasing the pixel array size from a 5 3 5 array to a 21 3

21 array the limit of the localization accuracy comes closer to

the fundamental limit. As is to be expected, increasing the

size of the pixel array improves the localization accuracy by

increasing the amount of data that is available for analysis.

However, in practical situations it is not always possible to

arbitrarily increase the size of the pixel array as often other

elements are present in the image. This limits the number ofT
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FIGURE 5 Limit of the localization accuracy of the u coordinate of

a single molecule with experimental parameters similar to those for a GFP

molecule as a function of pixel size for a pixelated detector in the presence of

measurement noise. } corresponds to a readout noise (sk) of 57 e�/pixel

(rms), � corresponds to a readout noise (sk) of 7 e�/pixel (rms), and the

scattering rate (bk) is set to 0 in both the cases. The limit of the localization

accuracy in the noise-free case (d) and the fundamental limit (solid line) are
also shown for reference. For all the plots the acquisition time is set to be t¼
0.05 s and the pixel array size is 1000 mm3 1000 mm. The pixel sizes were

chosen such that the pixel array consists of an odd number of rows and

columns.
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pixels that can be used to determine the location of the single

molecule unless a significant effort is made to model these

other elements in the image.

The expression for the limit of the localization accuracy in

the presence of noise sources allows for two noise sources,

Gaussian noise as it arises, for example, in the readout

process of the CCD camera and Poisson noise, which can be

used, for example, to model dark current in the CCD chip,

FIGURE 6 Limit of the localization accuracy of the u coordinate of a single molecule with experimental parameters similar to those for a GFP molecule for

a pixelated detector as a function of the single-molecule position for different noise levels and pixel sizes. Panel a (triangles) shows results in the presence of

noise with a scattering rate (bk) of 6600 photons/pixel/s and a readout noise (sk) of 57 e�/pixel (rms) for a 5 3 5 pixel array with a pixel size of 20 mm 3 20

mm. Panel b shows the same for a scattering rate (bk) of 660 photons/pixel/s and a readout noise (sk) of 7 e
�/pixel (rms) (triangles). Panel c shows results in the

noise-free case for a 103 10 pixel array with 10 mm3 10 mm pixels (}) and for a 503 50 pixel array with 2 mm3 2 mm pixels (�). The fundamental limit

(solid line) is also shown for reference. In all three plots the acquisition time is t¼ 0.01 s, the pixel array size is 100 mm3 100 mm, and d shows the limit of the

localization accuracy in the noise-free case for a 5 3 5 pixel array with 20-mm 3 20-mm pixels. The x axis of the plots denotes the position of the single

molecule with respect to the center of the pixel array (in the detector plane). The single molecule is moved in steps of 10 nm in the specimen plane, which

corresponds to 1-mm steps in the detector plane. All movements are parallel to the pixel edges. For a 20 mm 3 20 mm pixel this corresponds to moving the

single molecule from one edge of the central pixel to the opposite edge of the pixel, whereas for a 10 mm3 10 mm pixel this corresponds to moving the single

molecule over a pair of pixels that are centrally located on the detector and for a 5 mm3 5mm pixel this corresponds to moving the single molecule over a set of

four pixels centrally located on the detector.
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scattered photons, and autofluorescence. To study the effect

of noise sources on the limit of the localization accuracy, we

consider two sets of noise parameter values. In one, we set

the standard deviation (sk) of the Gaussian noise, e.g., the

readout noise, to be 7 e�/pixel (rms). In our simulations we

assume that the mean of the Gaussian noise is zero. This

value for the readout noise is on the lower level of reported

noise levels for current CCD cameras. For the low noise

simulations we assume that the Poisson noise has a rate bk of
0.01gA¼ 660 photons/pixel/s. This means, for example, that

we assume that in each pixel scattered photons are collected

at a rate that is 1% of the rate at which the photons emitted

by the single molecule arrive in the detector plane. In the

second set of noise parameters we consider parameters that

correspond to high noise levels, in particular for the readout

noise. In this case we set the standard deviation of the

readout noise to be 57 e�/pixel (rms) and the scattering rate

to be 0.1gA ¼ 6600 photons/pixel/s. This level of readout

noise is toward the high end on the scale of readout noise

levels for current CCD cameras. The smaller value for the

scattering rate is typically observed when imaging single

molecules in solution (Schmidt et al., 1995), whereas the

larger value is observed when imaging single molecules in

a cellular environment (Kues et al., 2001). In all figures we

assume that the noise statistics are the same for all pixels.

The dramatic effect that noise can have on the limit of the

localization accuracy is shown in Fig. 4 b, where the limit of

the localization accuracy is plotted as a function of the

expected number of detected photons for low scattering and

measurement noise levels for a 53 5 pixel array with 6.8 mm

3 6.8 mm pixel size. Fig. 4 c shows the same for high

scattering and measurement noise levels. The effect is

especially pronounced for low photon count numbers where

the limit of the localization accuracy can be an order of

magnitude larger than in the noise free case (see Fig. 4 c).
However, by increasing the total number of detected photons

it is possible to come close to the fundamental limit even at

high noise levels.

A similar effect of the noise sources on the limit of the

localization accuracy is shown in Fig. 3 b, where the limit of

the localization accuracy is plotted as a function of

magnification for different measurement and scattering noise

levels and for the noise-free case for a 11 3 11 pixel array

with a pixel size of 5 mm3 5 mm. For a given magnification

value, the presence of high noise levels can deteriorate the

best possible localization accuracy by an order of magnitude

when compared to the noise-free case. Also, at high noise

levels the limit of the localization accuracy deteriorates by

a factor of four when the magnification varies from 503 to

2003. For example, consider the image of a GFP single

molecule centered on a 11 3 11 pixel array with a pixel size

of 5mm3 5mm. At 503magnification (na¼ 1.4), the image

of the GFP single molecule in the pixel array will contain

93% of the expected number of detected photons. At 1003

magnification (na ¼ 1.4), the image of the GFP single

molecule in the pixel array will contain 87% of the expected

number of detected photons. Although by increasing the

magnification from 503 to 1003 we only lose ;6% of the

total number of detected photons, the limit of the localization

accuracy significantly deteriorates from 38 nm at 503

magnification to 60 nm at 1003 magnification at high noise

levels.

As mentioned earlier, it is important to determine

whether an estimation algorithm can attain the limit of the

localization accuracy. In Table 1 we list the standard

deviations of the maximum likelihood estimates of the

single-molecule location for different experimental con-

ditions typically reported in the single-molecule microscopy

literature. The table also lists the limit of the localization

accuracy that is calculated using Eq. 4. From the table we

see that the standard deviations of the maximum likelihood

estimates come reasonably close to the limit of the

localization accuracy under the various experimental con-

ditions. However, there are differences and in some cases

the standard deviation of the estimates is even lower than

the limit of the localization accuracy. This points to an

important aspect of the theory that underlies the approach

presented here. Whereas the theoretical derivations are

based on considerations of the standard deviations of

random variables, the simulations in Table 1 report

estimates of those standard deviations, which can differ

from the actual values.

In Table 1, for a given pixel size, the pixel array was

chosen such that;92% of the photons that reach the detector

plane are collected by the pixel array. Despite this, we see

that the limit of the localization accuracy varies widely for

different experimental conditions, especially for short

acquisition times (t ¼ 10 ms, parameter sets 1–4). If the

acquisition time is increased (t ¼ 100 ms, parameter sets 6,

8–10), we see that the variation of the limits of the

localization accuracy diminishes for the different experi-

mental conditions. In addition, the limits of the localization

accuracy also come close to the fundamental limit.

So far we have shown that noise sources can significantly

deteriorate the limit of the localization accuracy. It is

instructive to investigate the contribution of the different

noise types to the deterioration of the localization accuracy. In

parameter sets 5–7 of Table 1, we show that when the

scattering noise parameter is decreased from 6600 photons/

pixel/s to 0 photons/pixel/s with measurement noise fixed to 6

e�/pixel (rms), the limit of the localization accuracy decreases

from 2.5138 nm to 1.1951 nm. However, in parameter set 7

we see that if the measurement noise is also set to 0, then the

limit of the localization accuracy in the noise-free case

reduces to 0.9219 nm, which is significantly closer to the

fundamental limit of 0.7277 nm.

Fig. 5 shows the effect of pixel size on the limit of the

localization accuracy for a 1000 mm 3 1000 mm pixel array

at different measurement noise levels with the scattering

noise parameters set to zero, i.e., bk ¼ 0. The figure also
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shows the results in the noise-free case and the fundamental

limit. We consider a 1000 mm 3 1000 mm pixel array to

ensure that a sufficient number of photons are detected in the

case of large pixels. We note that the measurement noise is

independent of the number of detected photons and only

depends on the readout process of the CCD camera. Hence it

is kept fixed when the pixel size is varied. However, because

the number of pixels decreases as the pixel size increases,

less noise is added to the total accumulated data. In the noise-

free case the limit of the localization accuracy decreases with

decreasing pixel size, because with reduced pixel sizes the

effect of pixelation diminishes and the limit of the

localization accuracy approaches the fundamental limit.

However, in the presence of measurement noise the limit of

the localization accuracy first decreases but then increases

with decreasing pixel size, because by decreasing the pixel

size the number of detected photons in each pixel decreases,

whereas the measurement noise remains the same.

We recall that a similar behavior was observed in Fig. 3

due to the variation in magnification. However, the present

effect is different from that shown in Fig. 3, because by

varying the magnification the size of the single molecule

image was varied and this in turn affected the number of

photons captured by the pixel array. In the present case, the

pixel array is fixed to 1000 mm3 1000 mm ensuring that the

same number of photons are captured by the pixel array for

all pixel sizes. From this we deduce that for a given

experimental setup, the limit of the localization accuracy

depends not only on the total number of detected photons but

also on the number of photons captured in each pixel in the

pixel array. We note that an analogous behavior was reported

in Thompson et al. (2002), where the effect of pixel size on

the localization accuracy was discussed for a specific esti-

mation procedure.

We next consider the effect of the location of the single

molecule with respect to the pixel array on the limit of the

localization accuracy. Fig. 6 a shows the variation of the limit

of the localization accuracy as a function of the single

molecule position for a 53 5 pixel arraywith a pixel size of 20

mm 3 20 mm for high measurement and scattering noise

levels. Fig. 6 b shows the same for low measurement and

scattering noise levels. In both figures, the result for the noise-

free case is also shown for reference. From Fig. 6, a and b, we
observe that the localization accuracy varies periodically as

the single molecule is moved along the x direction. The best,
i.e., the smallest, values for the limit of the localization

accuracy are achieved when the image of the single molecule

is centered on the edge of a pixel. This is due to the fact that

small changes in the location of the single molecule at the

edge of a pixel lead to significant changes in the collected data.

The worst, i.e., largest, values for the limit of the localization

accuracy are achieved when the image of the single molecule

is located at the center of a pixel. From Fig. 6, a and b, we see
that the worst case value can be anywhere between 10%–80%

higher than the best case value depending on the noise level.

Note that the variation of the limit of the localization accuracy

is particularly pronounced for large pixel sizes. This

periodicity for a pixelated detector is in contrast to the

fundamental limit (Eq. 2), which is independent of the

location of the single molecule. As shown in Fig. 6 c, by
reducing the pixel size the effect of pixelation is diminished

and hence the periodic variation in the localization accuracy

also decreases. An immediate implication of the above result

is that moderate variations in the single-molecule position

within a pixel can lead to substantially different localization

accuracy values in the presence of high noise levels. This

analysis also provides an explanation of the phenomenon that

was reported in Cheezum et al. (2001), where it was observed

using numerical investigations that the localization accuracy

depends on the location of the single molecule with respect to

the pixels. It should be noted that other published expressions

for the localization accuracy (Kubitscheck et al., 2000;

Thompson et al., 2002) do not show a dependence on the

magnification and on the location of the single molecule. This

is due to approximations that were used in the model for the

acquired signal in the pixels.

The results presented in this section give an indication as

to the type of phenomena that can be investigated with our

approach. Further applications are easily conceivable such as

the evaluation of the effect of pixel shape or the presence of

dead space regions on the detector (e.g., due to the presence

of antiblooming gates) on the limit of the localization

accuracy. Although the expressions for the limit of the

localization accuracy in the pixelated case are not as

straightforward to analyze as the expression for the

fundamental limit they can be numerically evaluated in

a relatively straightforward way.

Generalization of the fundamental limit

In deriving the fundamental limit of the localization accuracy

we assumed that the time points of the photon emission

process are Poisson distributed and that the image of a single

molecule is described by the classical description of the

point-spread function. We now generalize this result and

present an expression for the limit of the localization

accuracy for the detection of an object whose time points

of the emitted photons are described by a general counting

process N(t), t$ 0, and whose image is described by a profile

fu(r) :¼ (1/M2)q(r/M � u), r 2 R2, where q is a general

image function. An image function describes the image of an

object on the detector that is located at the center of the

coordinate system and is imaged through a lens with unit

magnification (i.e., M ¼ 1). The limit of the localization

accuracy for the general setting for the u coordinate of the

object (the expression for the v coordinate is analogous) isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½I�1ðuÞ�11

p
; where I�1(u) is the inverse of the Fisher

information matrix given by (see Appendix for the deri-

vation)
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IðuÞ ¼ gE½NðtÞ�
ð
R2

1

qðx; yÞ
@qðx; yÞ

@x
;
@qðx; yÞ

@y

� �T

3
@qðx; yÞ

@x
;
@qðx; yÞ

@y

� �
dx dy: (5)

If the image function q is symmetric (i.e., q(x, y) ¼ q(�x,
y)¼ q(x,�y), x, y 2R) the off-diagonal entries of the Fisher

information matrix will be zero and the generalized

localization accuracy for the u coordinate is given by (see

Appendix for the derivation)

gE½NðtÞ�
ð
R2

1

qðx; yÞ
@qðx; yÞ

@x

� �2

dx dy

2
64

3
75

�1
2

: (6)

From the above expressions we note that the generalized

limit of the localization accuracy depends only on the

expectation value of the photon-emission process and on an

integral involving the image function and its derivative. This

explains the occurrence of the term gAt in the fundamental

limit (Eq. 2) as gAt is the expected number of detected

photons assuming a Poisson emission process with rate A.
Based on the results in Bobroff (1986) an expression was

given in Betzig (1995) that has a formal resemblance to the

expression in Eq. 6. Despite this formal similarity it appears

that the expressions cannot be reconciled, for example, due

to the fact that the constants and the domain of integration do

not match.

The general expressions (Eqs. 5 and 6) presented above

can be used to calculate the limit of the localization accuracy

for specific image functions such as the Gaussian profile. The

two-dimensional Gaussian profile has been widely used to

approximate the point-spread function (Schütz et al., 1997b;

Kubitscheck et al., 2000; Kues et al., 2001; Cheezum et al.,

2001; Thompson et al., 2002). A normalized two-dimen-

sional Gaussian image function is given by qðx; yÞ ¼
ð1=2ps2

gÞ expð�ðx21y2Þ=ð2s2
gÞÞ; x, y 2 R, sg[ 0. Using

Eq. 6 the limit of the localization accuracy is given by (see

Appendix for the derivation)

sgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gE½NðtÞ�

p ¼ sgffiffiffiffiffiffiffiffi
gAt

p ;

where in the last equality we assumed that the time points of

the emitted photons are Poisson distributed. The typical

approximation of the point-spread function (with parameters

na ¼ 1.4 and lem ¼ 520 nm) by a Gaussian profile using

least-squares approximation (with the Marquardt-Levenberg

Algorithm; Coleman et al., 1999) yields a value of sg ¼
81.73 nm. For an acquisition time of 10 ms and gA¼ 66,000

photons/s, the fundamental limit of the localization accuracy

for the point-spread function is 2.30 nm, whereas for the

Gaussian profile it is 3.18 nm. This shows a significant

difference between the expressions for the localization

accuracies of the two image functions despite one being

the best approximant of the other in a least-squares sense. It

should be noted, however, that both the Airy profile and the

Gaussian profile are normalized to have an integral of one.

Therefore the approximation of an Airy profile by a Gaussian

is not as good as would be the case if the prefactor of the

Gaussian was not constrained.

However, if an image profile is in fact Gaussian,

significant advantages exist (see Appendix). The center of

gravity estimator can be computed in a straightforward

manner by calculating the mean (adjusted for the magnifi-

cation of the lens) of the coordinates of the detected photons

(Cheezum et al., 2001; Ghosh and Webb, 1994; Goulian and

Simon, 2000). In our stochastic setting, if the image profile is

Gaussian the center of gravity estimator is a maximum

likelihood estimator. Therefore it has the generally good

statistical properties of a maximum likelihood estimator,

while at the same time being straightforward to calculate,

which is typically not the case for a maximum likelihood

estimator. Moreover, this estimator is unbiased (i.e., its mean

attains the correct result) and its variance is equal to the

inverse of the Fisher information matrix if the total number

of detected photons is assumed to be known (see Appendix).

This implies that in this case the center of gravity estimator

perfectly attains the limit of the localization accuracy, even

for small photon count numbers, i.e., it has the best possible

properties according to our criteria. Note that here we have

considered the pixel-free case. Others (Cheezum et al., 2001)

have shown that the center of gravity estimator can be biased

due to the potentially nonsymmetric averaging and sampling

of the profile that occurs due to pixelation.

Assuming that the number of detected photons is known

also leads to an improvement of the maximum likelihood

estimator when the image profile is the point-spread

function. This is shown in Fig. 2 where the maximum likeli-

hood estimator is calculated for two different acquisition

methods, one when the acquisition time is fixed and the other

when the total number of detected photons is fixed. From the

figure we see that the standard deviation in the latter case is

smaller than in the former case, because by fixing the

total number of detected photons in every image we reduce

the stochasticity of the experimental data and hence gain in

terms of the performance of the estimator.

It is occasionally suggested that the localization accuracy

is given by s=
ffiffiffiffi
N

p
; where N is the number of detected

photons and s is the standard deviation corresponding to the

point spread function profile. The above results show that

this is indeed correct if the profile is Gaussian. However, in

general this may not be correct for other profiles because the

integral expression in Eq. 6 does not necessarily reduce to

the variance of the distribution.
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Although we will not state explicit expressions, it should,

however, be noted that expressions analogous to Eq. 5 can be

derived for the effects of pixelation and noise on the limit of

the localization accuracy for a general image function. The

corresponding expressions for the Fisher information matrix

are stated in the Appendix.

The results given in this paper can be employed in

several ways in the context of single molecule micros-

copy. For instance, a concrete experimental setting can be

evaluated to see how close it can come to achieving the

fundamental limit of the localization accuracy. Moreover,

these expressions can be used as a standard against which

algorithms can be evaluated that are used to estimate the

location of single molecules from images. The discussion

concerning a general image profile is not only of

importance in the analysis of the localization accuracy

in single-molecule microscopy. In fact, these expressions

can be used to determine the localization accuracy for any

object with a known image function that is imaged by

a lens.

APPENDIX

Fundamental limit of the localization accuracy

In this section we discuss the technical details of the stochastic data-

generation process and the derivation of the results on the fundamental limit

of the localization accuracy. The counting process that describes the time

points of photon emission from the single molecule is denoted by N(t), t$ 0.

The spatial coordinates of the detected photons are independent and

identically distributed random variables with density function fuðrÞ ¼
ð1=M2Þqððr=MÞ � uÞ; where r 2 R2, q is an image function, M denotes the

magnification of the lens, and u denotes the position of the single molecule

in the specimen plane. Due to the finite transmission efficiencies of the

optical components in the light path, some of the photons emitted from the

single molecule are randomly deleted with probability 1 � g and only the

remaining fraction of emitted photons are detected by the detector, where g

denotes the overall efficiency of the detection system (i.e., microscope optics

and detector).

We assume that the counting process and the random variables that

describe the spatial coordinates are mutually independent. Given the

observed data, i.e., the spatial coordinates and the time points of the detected

photons, the location u of the single molecule in the specimen plane is to

be estimated. For this data-generation process, we first derive a general

expression for the Fisher information matrix and then give the results for the

specific cases of the point-spread function and the Gaussian profile.

The general expression for the Fisher information matrix is given by

(Rao, 1965; Zacks, 1971; Kay, 1993)

IðuÞ ¼ E
@Lðujz1; . . . ; zKÞ

@u

� �
@Lðujz1; . . . ; zKÞ

@u

� �T
" #

; (7)

where E[�] denotes the expectation operation with respect to the underlying

density function fu and the log-likelihood function is given by

Lðujz1; . . . ; zKÞ ¼ ln½ pðT1 ¼ t1; . . . ; TK ¼ tKjZðtÞ ¼ KÞ�

1 ln½PðZðtÞ ¼ KÞ� +
K

k¼1

ln½fuðrkÞ�:

Here fz1; . . . ; zKg denotes the observed data with zk :¼ (rk, tk), where rk :¼
(xk, yk) denotes the spatial coordinates of the kth detected photon and tk,

0\t1 # t2 # . . . # tK denotes the arrival time of the kth detected photon,

k ¼ 1; . . . ;K. In the above expression Z(�) denotes the counting process that
describes the times at which the photons are detected.

For the present discussion, it is assumed that the density function fu
satisfies the regularity conditions (Rao, 1965; Zacks, 1971) that are

necessary for the calculation of the Fisher information matrix. It can easily

be verified that for the specific special cases of the Gaussian profile and the

point-spread function, the regularity conditions are satisfied. A straightfor-

ward calculation shows that the Fisher information matrix I(u) is given by

If we further assume that the image function is symmetric (i.e., q(x, y) ¼
q(�x, y) ¼ q(x, �y), x, y 2 R) it can be easily verified that the off-diagonal

terms of the Fisher information matrix are zero.

Using Eq. 8 we now derive the fundamental limit of the localization

accuracy for the point-spread function and the Gaussian profile. We assume

that the counting process N(�) is a Poisson process with rate A (i.e., E[N(t)]¼
At). We first consider the point-spread function given by qðx; yÞ ¼
J21ða

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21y2

p
Þ=ðpðx21y2ÞÞ, (x, y) 2 R2, where a ¼ (2pna) / lem. Since q

is symmetric [I(u)]12 ¼ [I(u)]21 ¼ 0. The derivative of q with respect to x is

given by

@qðx; yÞ
@x

¼ �2ax

p

J1ða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
2
1 y

2
p

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 y2

p J2ða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
2
1 y

2
p

Þ
x2 1 y2

;

where we used the recurrence relations for Bessel functions given in Watson

(1958). Using an integral identity for Bessel functions (Watson, 1958) we

have

IðuÞ ¼ gE½NðtÞ�

ð
R2

1

qðx; yÞ
@qðx; yÞ

@x

� �2

dx dy

ð
R2

1

qðx; yÞ
@qðx; yÞ

@x

@qðx; yÞ
@y

dx dy

ð
R2

1

qðx; yÞ
@qðx; yÞ

@x

@qðx; yÞ
@y

dx dy

ð
R2

1

qðx; yÞ
@qðx; yÞ

@y

� �2

dx dy

2
6666664

3
7777775
: (8)
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where x¼ r cos f and y¼ r sin f. Similarly we show that [I(u)]22¼ gAta2.

Then the fundamental limit of the localization accuracy of the single

molecule is given by the square root of the diagonal elements of the inverse

Fisher information matrix, i.e.,

du ¼ dv ¼
lem

2pna

ffiffiffiffiffiffiffiffi
gAt

p :

Next we consider the Gaussian profile given by qðx; yÞ ¼ ð1=ð2ps2
gÞÞ

expð�ðx21y2Þ=ð2s2
gÞÞ; ðx; yÞ 2 R2: Due to symmetry, the off-diagonal

terms of the Fisher information matrix are zero and we have

½IðuÞ�11 ¼ ½IðuÞ�22 ¼ gE½NðtÞ�
ð
R2

1

qðx; yÞ
@qðx; yÞ

@x

� �2
dx dy

¼ gAt

s
4

g

1ffiffiffiffiffiffi
2p

p
sg

ð
R

x
2
e
� x

2

2s
2
g dx

0
@

1
A

3
1ffiffiffiffiffiffi
2p

p
sg

ð
R

e
� y

2

2s
2
g dy

0
@

1
A ¼ gAt

s
2

g

:

Therefore the limit of the localization accuracy for a Gaussian profile is

given by ðsg=
ffiffiffiffiffiffiffiffi
gAt

p
Þ:

In the previous result we had assumed that the observed data was

acquired for a fixed time t. Because the photon detection process is a random

process, the number of detected photons for every image will vary in

repeated experiments. We now show that if the detector can be set to acquire

a fixed number of photons several advantages exist in case the image

function is a Gaussian profile. A derivation that is analogous to the above

shows that the corresponding expressions for the Fisher information matrix

and the limits of the localization accuracy can easily be obtained from the

earlier expressions by replacing the terms gE[N(t)] and gAt, respectively, by

N0, the number of detected photons.

In the remainder of this derivation we assume the image function q to be

a Gaussian profile. The log-likelihood function for the underlying data

generation process is given by Lðujr1; . . . ; rN0
Þ ¼ + N0

k¼1 ln½fuðrkÞ�; where
fr1; . . . ; rN0

g, rk :¼ (xk, yk) 2 R2 for k ¼ 1; . . . ;N0 denotes the observed

data. The maximum likelihood estimator ûML :¼ ðûML; v̂MLÞ of u ¼ (u, v) is

obtained by solving the equation

@Lðujr1; . . . ; rN0
Þ

@u
¼ +

N0

k¼1

@ ln½ fuðrkÞ�
@u

¼ 1

s
2

g

+
N0

k¼1

xk
M

� u
� �

;
1

s
2

g

+
N0

k¼1

yk
M

� v
� �" #

¼ 0;

and is given by

ûML ¼
+
N0

k¼1

xk

MN0

; v̂ML ¼
+
N0

k¼1

yk

MN0

;

which is nothing but the center of gravity estimator.

We can easily verify that ûML is an unbiased estimator of u, i.e.,

E½ûML� ¼ u and that the (co-)variance of ûML is given by

VarðûMLÞ ¼
s

2

g

N0

1 0

0 1

� �
¼ I�1ðuÞ:

This shows that in the case of a Gaussian profile, the variance of the center of

gravity estimator is equal to the inverse of the Fisher information matrix (i.e.,

it is an efficient estimator). This means that the center of gravity estimator

has the best possible properties according to our criteria. See also Snyder and

Miller (1991) where an analogous derivation was carried out for a laser

tracking problem in the context of optical communications.

Effects of pixelation and noise

Imaging detectors have pixels and the experimental data are often corrupted

by various noise sources. These experimental effects lead to a modification

of the description of the stochastic data-generation process. We assume that

the detector is made up of a set of pixels C1; . . . ;CK and that the noise

sources that are considered are additive Poisson noise and additive Gaussian

noise. The acquired image is denoted by fI1; . . . ; IKg where Iu;k ¼
Su;k1Bk1Wk denotes data acquired in the kth pixel, u denotes the unknown

position of the single molecule, Su, k is a Poisson random variable with mean

muðkÞ ¼ gAt
R
Ck

fuðrÞ dr with fu is given in Eq. 1, Bk is a Poisson random

variable with mean bkt, t denotes the acquisition time, and Wk is a Gaussian

random variable with mean hk and variance s
2
k:We further assume that Su, k,

Wk, and Bk are independent random variables for k ¼ 1; . . . ;K.

We consider three scenarios, namely the noise-free case, the presence of

Poisson noise and the presence of both Gaussian and Poisson noise. The

limit of the localization accuracy for each of the above cases is obtained by

calculating the square root of the inverse of the Fisher information matrix

(Eq. 7). To calculate the latter, the log-likelihood function L needs to be

½IðuÞ�11 ¼ ½IðuÞ�22 ¼ gE½NðtÞ�
ð
R2

1

qðx; yÞ
@qðx; yÞ

@x

� �2

dx dy

¼ gE½NðtÞ�
ð
R2

1

1

p

J
2

1ða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
2
1 y

2
p

Þ
ðx2 1 y

2Þ

@

@x

J
2

1ða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
2
1 y

2
p

Þ
pðx2 1 y2Þ

 !" #2

dx dy

¼ 4gAta
2

p

ð
R2

x
2
J
2

2ða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
2
1 y

2
p

Þ
ðx2 1 y

2Þ2
dx dy ¼ 4gAta

2

p

ð2p
0

cos
2
f df

ð‘
0

J
2

2ðarÞ
r

dr ¼ gAta
2
;
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specified. This is given in terms of the logarithm of the joint probability

density function of the observed data. In the following results we set u1 :¼ u,

u2 :¼ v and the Fisher information matrix I(u) is a 2 3 2 matrix.

Fisher information matrix for the noise-free case

The following expression for the Fisher information matrix in the noise-free

case follows from the application of a well-known result for the Fisher

information matrix for Poisson random variables (see, e.g., Snyder and

Miller, 1991, and Kay, 1993) to our situation.

½IðuÞ�ij ¼ +
K

k¼1

1

muðkÞ
@muðkÞ
@ui

@muðkÞ
@uj

; i; j ¼ 1; 2: (9)

Similar to Eq. 8 the Fisher information matrix depends on the integral of

the density function fu(r) that characterizes the image profile.

Fisher information matrix for the Poisson noise case

This next expression gives the Fisher information matrix for the situation

when the data in each pixel is corrupted by Poisson noise of mean bkt,

k ¼ 1; . . . ;K; such as due to scattered photons or cellular autofluorescence.

Because this noise component is assumed to be stochastically independent of

the data due to the photon emission of the single molecule, the number of

photons collected in the kth pixel is Poisson distributed with meanmu(k)1 bkt

for k ¼ 1; . . . ;K:We also assume that the noise component is independent of

the location of the single molecule. Analogously to the way the Fisher

information matrix was obtained in the noise-free case we therefore have that

½IðuÞ�ij ¼ +
K

k¼1

1

bkt1muðkÞ
@muðkÞ
@ui

@muðkÞ
@uj

; i; j ¼ 1; 2:

Note that by setting bk ¼ 0, k ¼ 1; . . . ;K, we obtain the Fisher

information matrix for the noise-free case. The resulting expression for the

limit of the localization accuracy is given in Eq. 3.

Fisher information matrix for the Poisson and
Gaussian noise case

The Fisher information matrix for a pixelated dectector in the presence of

independent Poisson noise with mean bkt and independent Gaussian noise

with mean hk and variance s2
k; k ¼ 1; . . . ; k, is given by

where i, j ¼ 1, 2 and

pu;kðzÞ :¼
1ffiffiffiffiffiffi
2p

p
sk

+
‘

l¼0

½nuðkÞ�l3e
�nuðkÞ

l!

3e
�1
2

z�l�hk
sk

ð Þ2 ; z2R; (10)

with nu(k) :¼ mu(k) 1 bkt for k ¼ 1; . . . ;K: The derivation of this

expression is based on the fact that the probability density function of a sum

of a Poisson and independent Gaussian random variable is given by Eq. 10

(Snyder et al., 1995). The log-likelihood function L can then be calculated.

Substituting for L in Eq. 7 we obtain the above result. The resulting

expressions for the limit of the localization accuracy are given in Eq. 4.
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